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1. THE BASIC SYSTEM OF NON-CONSERVATIVE EQUATIONS

The hyperbolic convective subset of a second-moment turbulence closure for the Fa
averaged compressible Navier—Stokes equations can be written as [1]
(p)t+ (PUj)j =0
(pUi) 1 + (pUiUj +8ijp+ pRj),j =0
(PBE)t + (PEUj + Ui (p&ij + pRij)).j =0
(PRj)+ + (pRjU) k = —pRUj k — pRiUi k,

1)

wherep stands for the mean density,is the density weighted mean velocity vecRithe
Reynolds stress tensor with componeR{s= u;'uj, E the mean specific total energy, and
p the mean pressure which can be expressed via the ideal gas law (imétimg the ratio
of specific heats), viz.,

1 1
p:(V—l)(PE—ZPUkUk— 2PRkk)- 2

For simplicity we will restrict the following presentation to flows with statistically two
space dimensions, i.e., a variable vedoe= (o, pU, pV, pE, pR11, o Ro2, pRas, p R,
such that we can write the system in matrix-vector notation

Wi+ (Fi(W))i =HW, VW), =12, 3)
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and furthermore define the following projections with respect to coordiriates s),

U, = U'n, Ran = N'RN, Ro: = N'RT

. . 4)
U, =U'r, R;: = 7'RT, Rss = Ras,
wheren = (ny, ny, 0), 7 = (—ny, Ny, 0), ands= (0, 0, 1).
Equations (1) cannot be cast into conservation form due to the presence of turbule
production. The characteristics wave system has the following eigenvalues with respe
an arbitrary directiom:

A1 =Up—cy, Az =Up — Gy, Az—e = Up, A7 =Up + Gy,

5
Ag=Un+c, C=+yp/p+ 3R, 2 = +/Ran. ©
An approximate analytical solution to the Riemann problem of the above system has k
obtained in [2] resorting to a linear path across genuinely non-linear waves. With th
ingredients it is possible to construct a full Godunov scheme as has been successfully |
in the related case of lee type closure [3]. In this note, we will alternatively present ar
approximate numerical Riemann solver. The basic flux-difference-splitting technique v
be recalled first before moving on to the case of a non-conservative system.

2. ROE’S SCHEME FOR SYSTEMS OF CONSERVATION LAWS

Let us consider a hyperbolic system of one-dimensional conservation laws in tv
dimensional space (without summation over subserjpt

IF;
Wi +ALSW, n)-W, =0, APS= W (6)

where we define
An(W, n) =ny - Ar(W) + ny - Ax (W), Fa(W, n) = ny - F1(W) +ny - Fo(W). (7)
An approximate Riemann solver provides the exact solution to the linearized problem
Wi+ AW, Wg,n)-W, =0, (8)
which consists of five simple waves since all fields are linearly degenerate (note that
subscripts () and ( )k indicate states to the left and right, respectively, of the the initic

discontinuity traveling along the directior). The corresponding numerical flux function
is thus expressed by the well-known formula

1 1
FRoe = 5 (FnWL.n) + Fn(We. ) — E'A(WL, Wr,m|- (Wr=Wp).  (9)

The problem of finding a sensible linearizatighfW_, Wg, n) has been translated into
three conditions of consistency by Roe [4]:
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(i) AW, W, n) is hyperbolic and a diagonal form exists,
(i) AW, W, n) =AW, ny,
(i) AWL, Wgr, m[W] =[Fa(W, m] (defining the jump §] = ¢r — ¢1).
In the case of the Euler equations of gas dynamics, it turns out that the linearized sys
matrix is equal to the original system matrix under a transformation of variables that
been termed Roe’s average:

AEuIer — AEuIer(WRoe(WL ,WRr), n). (10)

In the past, some authors have forced the hyperbolic part of the second-moment clo
equations to take a conservative form by eliminating from Eq. (1) the production term ¢
the action of the Reynolds stress in the conservative flux of momentum and total ene
[5, 1]. Inthe resulting truncated system turbulence is only felt via the pressure that is defi
by Eqg. (2). This simplified approach enables us to simply use Roe’s flux formulation (9)
conjunction with Roe’s average for all variables (cf. [1] for details). We will demonstra
below that this approach can give rise to unphysical solutions.

3. ROE-TYPE SCHEME FOR NON-CONSERVATIVE SYSTEMS

We return to our non-conservative system of transport equations

Wi+ As(W,n)- W, =0,
8F| nc nc (11)
whereA; = — + Cl°(W),  CI(W) - W,; = —H(W. VW),

As seen below, we discretize the source t&R(W, n)W , in a simple, centered man-
ner. As a consequence, applying Roe’s flux-difference-splitting gives formally the sa
numerical flux formula as in the above case of conservation law [1]:

1 1
FRNC - > FaWi,m) + Fa(Wg, ) = SIAWL, Wr,m] - (Wr—W0).  (12)

Similarly, we require the linearizatiaa to fulfill the following two fundamental constraints:

(i) AW, Wg, n) is hyperbolic and a diagonal form exists,
@iy AW, W, n)=A.(W,n).

In a straightforward extension of Roe’s above idea (iii), i.e., that the numerical flux be ex
in the case of a shock wave being located between two nodes, one would write as the
condition

(i) a AW, Wr, M[W] =[Fn(W, n)] + CRS(W, Wg, N)[W].

The jump conditions of the non-conservative source t&(W_, Wg, n)[W] are the
approximate ones based on the assumption of a linear path in terms of the vZrable
1/p,U,V, p, pRan, pRez, pRss, pRa:)t. The proposition of a linear path is due to Le
Floch [6] and has been put forth in the context of a generalized Rankine—Hugoniot condit
for non-conservative hyperbolic systems (cf. also [7]). Our particular choice of the varial
Z has been inspired by previous work k+z type closures (cf. [8, 9, 3]). It leads to the
desirable feature thatthe jump conditions (a) reduce to the exact Rankine—Hugoniot relat
in the limit of zero turbulence, and that (b) are equivalent to the Riemann invariants in
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case of linearly degenerate fields (cf. [1, 10, 2]). However, we would like to emphasize t
the condition (iii}, is strictly valid only in the limit of zero shock strength and cannot be
regarded as a rigorous consistency condition as in the case of conservative systems.

In the case ok-¢ type closures [11, 12] and in the context of two-phase flows [13
conditions (i), (ii), and (iii} again lead to a linearized matrix resembling the original systel
matrix

AW, Wg, n) = Ay(W(W_, Wg), n), (13)

whereW is a particular average that differs from Roe’s averaging.

In the present case, however, the linearized madrobtained from the above relations
(i), (i), and (iii)a cannot be recast into the form of the system maiixW (W, Wg), n)
since a corresponding averagedoes not exist [1]:

A WWL, Wr)/An(W, M)[W] = [Fa(W, n)] + CISW_, Wg, m[W].  (14)

The matrixA that issues from condition (iij)is thus in a form not suitable for numerical pur-
poses, in particular its diagonalization could not be obtained. Alternatively, an approxim
Godunov scheme can be constructed [10, 2] which does not rely on Roe’s condition (
In the same spirit, we have relaxed this condition and replaced it by the following sim
expression based on an arithmetic average:

i)y AW, Wg, n) =A,(W(Y), n) (definingY = (Y_ +YRr)/2),

whereY = (p, Un, U;, Ht, Ran, Rez, Rss, Roc)t in local coordinatesr(, = perpendicular
and tangential respectively to the discontinuity) and total enthaply being defindd=as
E + p/p. Our numerical flux function can finally be written as (RNC designattug
non-conservative)

1 1 —
FRNC — SFa(W0L, )+ Fa(Wg, m) = SIAWY), M- Wr = W0).  (15)

The “absolute value” of the system matrix is calculated through the relation
AW (Y), m] = RW(Y), n) - [AW(Y), ] - R7HW(Y), n), (16)

where A is the diagonal eigenvalue matrix aftiand R~ the diagonalization matrices
containing the right and left eigenvectors, respectively.

4. INTEGRATION METHOD

Since in most finite volume methods multidimensional flows are treated as a succes
of quasi one-dimensional problems for each cell face, it suffices in the following to pres
a one-dimensional discretization.

Integrating Eq. (11) over a finite volunge (Vg being the cell volumel'; designating
the cell surfaceAt the time step, superscriptindexing time stepsy being the outward
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normal vector) we obtain

Vo, - (W — WD) + At 7{ FRNG(W], Wg, n) dI + S(W") 3 =0. (17)

I

The source term§; are expressed by a centered difference, so that

S = /C”C(W) W, dQ = C"(W") - /W,ndsz = CMWD) - fwr (WM dry, (18)
Q. Q\ l-‘I

where

W + W%

WrW") = 5

(19)

at the respective cell fadeR.

5. QUASI ONE-DIMENSIONAL RIEMANN PROBLEMS

The first case is a Sod [14] shock tube with high turbulence Mach nuniies (1, 0, O,
45-10°, 210°, 210P, 210°, 210P), Yr=1(3,0,0,2.88- 1C°, 210°, 2210°, 201¢C°, 2. 10°).
The results (Figs. 1 and 2) demonstrate the monotonic behaviour of the method as
as its capability of respecting analytically obtained Riemann invarignts R, being
invariant with respect to the three contact discontinuities associated.with_g, A7).

The second case of a symmetrical double shdfgk= (1, 100, 0, 3.7 - 10°, 310, 2107,
210%, 210%, Yr=(1,—100,0, 3.7 - 10°, 210%, 310%, £10%, 210%) underlines the fact that

08 + |
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O 1 1 1 1 i
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X

FIG. 1. Turbulent shock tube; distribution of densjtyobtained with the present scheme (RNC).
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FIG. 2. Turbulent shock tube; distribution of pressyre@nd total normal stress+ p R,, obtained with the

scheme RNC, the latter quantity being invariant with respect to the contact discontinuity in the center 3-4-
wave).

essentially Euler-based methods—decoupling the turbulent wave system from the aero
modynamic one—can lead to spectacular oscillations (Fig. 4). The proposed RNC mett
on the other hand, captures adequately the wave propagation, even of very sensitive
tities like the Riemann invariants of the 2- and 7-wave: Ry /+/Ran (Fig. 3).

Detailed information on the analytical solution of the Riemann problem as well -

all specific ingredients of the numerical method can be obtained from the authors u
request.

Uy — a4 20

20 . . ) . .
0 N 10 15 20 25 30

FIG. 3. Symmetrical double shock; distribution of invarians + R,, /+/R,, obtained with the present
scheme (RNC).
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FIG. 4. Symmetrical double shock; distribution of invariatis+ R,,/+/R., obtained with the “decoupled

approach.”
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